Contribution ID: 78

Type: Poster

Peculiarity of mechanical characteristics of nano composites of multiwalled carbon nanotubes and polyethylene, polyvinyl chloride, porous polystyrene

Saturday, 26 September 2020 15:34 (4 minutes)

The quasitransversal ultrasonic velocity $V \boxtimes = 756 \pm 10 \text{ m/sec}$, shear module $G = \rho V \boxtimes 12 = 554 \text{ MPa}$, Poisson coefficient $\mu \approx 0.44$, Debye temperature $\theta D \approx 71 \text{ K}$ polyethylene with low density high pressure (C2H4)n were determined from the oscilloscopegramma. The ultrasonic (US) attenuation logarithmic decrement was $\delta_{\square} \boxtimes 1.65 \times \boxtimes 10\mathbb{Q}^{\wedge}(-1)$.

If dislocation segment $\xi(x,y)$, that are vibrated under the act of tension τ , is charged, additional forces will operate on it FE = $e\rho(\xi)E$ and FM = $e\rho(\xi)[\partial\xi/\partial t, B]$, where $\rho(\xi)$ - is the distribution function of electrical charge density on the dislocation segment [1]. The system of equations, which describes the movement of the charged dislocation under act of the mechanical, electrical and magnetic fields, acquires the following kind:

 $M\partial 2\xi/\partial t2 = Vd \ \partial 2\xi/\partial x2 - Q\partial\xi/\partial t + b\tau - b\tau a - Nj \ \partial U/\partial\xi + e\rho(\xi)E + e\rho(\xi)[\partial\xi/\partial t, B], (1)$

 $\frac{\partial 2\tau}{\partial y^2} - \rho/G \frac{\partial 2\tau}{\partial t^2} = \rho b \frac{\partial 2}{\partial t^2} < \int 0 \infty \left[\int 01\xi(x) dx \right] N(l) dl >. (2)$

Acoustic emission (AE) method was measured the group longitudinal wave velocity in SiO2+TiO2+ZrO2 film there was $v \boxtimes = l/t \approx 0,00042 \text{ m}/0,114 \text{ mcsec} \approx 3680 \text{ m/sec}$ and the group shear wave velocity was $v \boxtimes = l/t \approx 0,00042 \text{ m}/0,134 \text{ mcsec} \approx 3130 \text{ m/sec}$. Taking into account the value of density $\rho \approx 4,05.103 \text{ kg/m3}$, elastic modulus was determined $E = \rho.v \boxtimes 2 \approx 54,85$ GPa and shear modulus was determined $G = \rho.v \boxtimes 2 \approx 39,68$ GPa. REFERENCES

A.P. Onanko, V.V. Kuryliuk, Y.A. Onanko et al. Journal of nano- and electronic physics. – 2020. – T. 12, № 4. – 04026. DOI: 10.21272/jnep.12(4).04026.

Topics

Session A. Physics of condensed matter and spectroscopy

Primary author: BOYKO, Volodymyr (Taras Shevchenko National University of Kyiv)

Co-authors: ONANKO, Yuriy (Taras Shevchenko National University of Kyiv); CHARNYI, Dmitro (Taras Shevchenko National University of Kyiv); ONANKO, Anatoliy (Taras Shevchenko National University of Kyiv); KUL-ISH, Mykola (Taras Shevchenko National University of Kyiv); DMYTRENKO, Oksana (Taras Shevchenko National University of Kyiv); PINCHUK-RUGAL, Tatiana (Taras Shevchenko National University of Kyiv); ALIEKSANDROV, Maksim (Taras Shevchenko National University of Kyiv)

Presenter: BOYKO, Volodymyr (Taras Shevchenko National University of Kyiv)

Session Classification: Poster session