

Dynamics of magnetic domain wall motion in cylindrical nanowires

O. Fruchart¹

1. SPINTEC, Univ. Grenoble Alpes / CNRS / CEA-INAC, France

UNIVERSITÉ Grenoble

2. Institut NÉEL, Univ. Grenoble Alpes / CNRS, France

www.spintec.fr email: olivier.fruchart@cea.fr

Slides: http://fruchart.eu/slides

Curvilinear magnetism – Київ, Україна – 23-24 May 2019

CNIS

cea

FUNDAMENTALS and APPLICATIONS

Fundamentals: curved and 3D magnetism

R. Streubel, J.Phys.D: Appl.Phys. 49, 363001 (2016)

A. Fernandez-Pacheco, Nat. Comm. 8, 15756 (2017)

université Grenoble

Alpes

Olivier FRUCHART

Domain wall motion in cylindrical nanowires

Note: 3D devices make the decision!

Spin IN ELECTRONICS

K. T. Park et al., IEEE J. Sol. State Circuits 50 (1), 204 (2015)

Dreams for a 3D storage device

S. S. P. Parkin, Science 320, 190 (2008) + patents (IBM)

MASS STORAGE DEVICES: areal storage

HDD vs Flash Cross-over in 2016

□ 1Gb/mm2 \rightarrow 600Gb/in2...

UNIVERSITÉ Grenoble

Magnetic mass storage may only remain for niche applications 24-layer 3D NAND Flash K. T. Park et al., IEEE J. Sol. State Circuits 50 (1), 204 (2015)

spintec/

Olivier FRUCHART Domain wall motion in cylindrical nanowires

23 May 2019 Curvilinear magnetism – Київ, Україна

Average speed does not exceed much 100 m/s

Olivier FRUCHART Domain wall motion in cylindrical nanowires

UNIVERSITÉ Grenoble

Alpes

23 May 2019 Curvilinear magnetism — Київ, Україна

Δ

Beating Walker with special materials

Is direct spin-transfer in ferromagnets not compatible with fast DW motion?

UNIVERSITÉ Grenoble

spintec/

Olivier FRUCHART

Domain wall motion in cylindrical nanowires

Curvilinear magnetism – Київ, Україна

5

23 May 2019

DISCUSSED SO FAR

Motivation

Domain walls in wires Expectations

23 May 2019 Curvilinear magnetism — Київ, Україна

DOMAIN WALLS IN CYLINDERS

Domain wall motion in cylindrical nanowires

spintec/

BLOCH-POINT WALLS DYNAMICS

Alpes

Curvilinear magnetism – Київ, Україна

spintec/

DISCUSSED SO FAR

Motivation

Domain walls in wires Expectations

Synthesis

Olivier FRUCHART Domain wall motion in cylindrical nanowires 23 May 2019 Curvilinear magnetism — Київ, Україна

SYNTHESIS

Standard

Electroplating -> Magnetic wires

UNIVERSITÉ Grenoble Simple metals and alloys : Co, Ni, Fe₂₀Ni₈₀, Co₂₀Ni₈₀

Domain wall motion in cylindrical nanowires

100nm S. Da Col et al., APL 98, 112501 (2011)

Olivier FRUCHART

Diameter engineering

 Atomic layer deposition to reduce inner diameter at constant pitch

spintec/

S. Da Col et al., APL 98, 112501 (2011)

Sequences of anodization/ALD/etching

23 May 2019 Curvilinear magnetism — Київ, Україна

DISCUSSED SO FAR

Motivation

Identify walls

Domain walls in wires Expectations

Synthesis

Olivier FRUCHART Domain wall motion in cylindrical nanowires 23 May 2019 Curvilinear magnetism – Київ, Україна

XMCD-PEEM TECHNIQUE

Domain wall motion in cylindrical nanowires

UNIVERSITÉ Grenoble

Alpes

spintec/

IMAGE BOTH WIRES AND SHADOW

Non-trivial patterns

Need for modeling

Olivier FRUCHART

Grenoble Grenoble

Alpes

Domain wall motion in cylindrical nanowires

23 May 2019 Curvilinear magnetism – Київ, Україна

Spintec VEEL

MODELING SHADOW XMCD-PEEM

TWO WALL TOPOLOGIES OBSERVED

DISCUSSED SO FAR

Domain walls in wires
 Expectations

Identify walls

Move walls under field

Synthesis

Olivier FRUCHART Domain wall motion in cylindrical nanowires 23 May 2019 Curvilinear magnetism — Київ, Україна

Spintec VEEL

MOVE DOMAIN WALLS - QUASISTATICS

spintec/

DYNAMICS – SELECTION OF CIRCULATION

Olivier FRUCHART Domain wall motion in cylindrical nanowires

Grenoble

Alpes

23 May 2019 Curvilinear magnetism – Київ, Україна 19

DYNAMICS – DOMAIN WALL TRANSFORMATION

DW TRANSFORMATION - SIMULATIONS

DISCUSSED SO FAR

Domain walls in wires
 Expectations

Synthesis

Identify walls

Move walls under field

Move walls under current

Olivier FRUCHART Domain wall motion in cylindrical nanowires 23 May 2019 Curvilinear magnetism — Київ, Україна

Spintec VEEL

ELECTRICAL CONTACTING

Lower bound for domain-wall speed $v \gtrsim 350 \text{ m/s}$

Hint of high mobility for Bloch-point domain wall?

-200

Olivier FRUCHART Domain wall motion in cylindrical nanowires 23 May 2019 Curvilinear magnetism – Київ, Україна **I**ÉFI

24

Co₄₀Ni₆₀ wires, diameter 100nm. FoV 9μm

Grenoble Grenoble

 $\rho_{\rm CoNi} \approx 3.5 \cdot 10^{-7} \ \Omega \cdot m$ $\rho_{\rm bulk} \approx 10^{-7} \ \Omega \cdot m$

Wall type – Switching of Bloch-point wall circulation

- Striking difference with field-driven case: only Bloch-point walls
- Circulation of magnetization determined by sign of current
- Contrary to predictions: does not depend on direction of motion

Olivier FRUCHART Domain wall motion in cylindrical nanowires 23 May 2019 Curvilinear magnetism – Київ, Україна

Threshold current for switching

université Grenoble

Alpes

- Driving force: Œrsted field, disregarded so far
- Quantitative agreement between experiments and simulation

Olivier FRUCHART Domain wall motion in cylindrical nanowires 23 May 2019 Curvilinear magnetism – Київ, Україна

spintec/

26

CoNi wires, diameter 100nm. FoV 17µm

Spintec VEEL

Motion under current

	$j\simeq \cdot$	$-1.3 \cdot 10^{12} \text{A/m}^2$
		< 30 ns
A la seconda de la se	j ≃	$+1.3 \cdot 10^{12} \text{A/m}^2$
		< 30 ns
Contract Seam	$ ho_{ m CoNi}$?	$\approx 3.5 \cdot 10^{-7} \ \Omega \cdot m$
	$ ho_{ m bulk}$ $pprox$	$\approx 10^{-7} \Omega \cdot m$

Olivier FRUCHART

Domain wall motion in cylindrical nanowires

23 May 2019 Curvilinear magnetism – Київ, Україна

Domain wall motion in cylindrical nanowires

Alpes

Curvilinear magnetism – Київ, Україна

spintec/

TAKE-AWAY MESSAGES

- Motivation
- Domain walls in wires
 Expectations

Synthesis

Identify walls

Move walls under field

Move walls under current

Wall topology may change under field. Intrinsic + defects?

spintec VEEL

- Œrsted field stabilizes BPW. High speed, no Walker breakdown
- Record for STT-driven wall in ferromagnet
- The magnonic regime may be at hand
 - A. Wartelle, PRB99, 024433 (2019)

M. Schöbitz et al, arXiv: 1903.08377

Olivier FRUCHART Domain wall motion in cylindrical nanowires 23 May 2019 Curvilinear magnetism – Київ, Україна **29**

Review

Edited by Ekkes Brück

M. Stano, O. Fruchart, Magnetic Nanowires and nanotubes (2018) arXiv: 1808.04656

Olivier FRUCHART

Domain wall motion in cylindrical nanowires

23 May 2019 Curvilinear magnetism — Київ, Україна

Spintec VEEL

ACKNOWLEDGEMENTS

spintec/

A De Riz, S. Martin, C. Thirion, L. Cagnon, J. Vogel, D.

Gusakova, J. C. Toussaint

Univ. Erlangen-Nürnberg S. Bochmann, J. Bachmann

ELETTRA T. O. Mentes, A. Locatelli, F. Genuzio; ALBA M.

Foerster; L. Aballe

CEMES A. Masseboeuf, C. Gatel

This project has received funding from the European Union Seventh Framework

Programme (FP7/2007-2013) under grant agreement n° 309589 (M3d).

M3D

31

Olivier FRUCHART Domain wall motion in cylindrical nanowires

23 May 2019 Curvilinear magnetism – Київ, Україна

Thank you for your attention !

Spintec

www.spintec.fr email olivier.fruchart@cea.fr Slides <u>http://fruchart.eu/slides</u>