22-25 May 2019
Kyiv, Ukraine
Europe/Kiev timezone

Effect of Curvature on Topological Defects in Chiral Magnets and Soft Matter

23 May 2019, 09:45
Invited talk


Prof. Avadh Saxena (Los Alamos National Lab)


The interplay of geometry and topology underlies many novel and intriguing properties of a variety of soft and hard materials including biological vesicles, nematic liquid crystals and chiral magnets. These materials harbor a gamut of topological defects ranging from domain walls, disclinations, solitons, vortices, skyrmions and merons to monopoles, Dirac strings, hopfions and boojums among many others. I will illustrate this rich interplay with three distinct physical examples. (i) Either the change in the underlying curved manifold or the variation of the Dzyloshinskii-Moriya interaction (DMI) with curvature in magnetic systems. (ii) Controlled motion of liquid crystal skyrmions near curved boundaries using the Q-tensor (as opposed to director) based free energy where the twist acts as the analogue of DMI. (iii) Deformation of biological membranes and vesicles using Canham-Helfrich free energy and Bogomol’nyi decomposition technique to determine equilibrium shapes. Finally, I will briefly describe specific applications of these ideas in spintronics, memory devices as well as drug delivery systems and active matter.

Primary author

Prof. Avadh Saxena (Los Alamos National Lab)

Presentation Materials

There are no materials yet.